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A new immersed boundary method based on vorticity–velocity formulations for the simu-
lation of 2D incompressible viscous flow is proposed in present paper. The velocity and vor-
ticity are respectively divided into two parts: one is the velocity and vorticity without the
influence of the immersed boundary, and the other is the corrected velocity and the cor-
rected vorticity derived from the influence of the immersed boundary. The corrected veloc-
ity is obtained from the multi-direct forcing to ensure the well satisfaction of the no-slip
boundary condition at the immersed boundary. The corrected vorticity is derived from
the vorticity transport equation. The third-order Runge–Kutta for time stepping, the
fourth-order finite difference scheme for spatial derivatives and the fourth-order discret-
ized Poisson for solving velocity are applied in present flow solver. Three cases including
decaying vortices, flow past a stationary circular cylinder and an in-line oscillating cylinder
in a fluid at rest are conducted to validate the method proposed in this paper. And the
results of the simulations show good agreements with previous numerical and experimen-
tal results. This indicates the validity and the accuracy of present immersed boundary
method based on vorticity–velocity formulations.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Recent years, numerous numerical techniques are developed for the simulation of the interaction between fluid and an
embedded body [1–5]. Especially, the immersed boundary method (IB), originally developed by Peskin [6] to investigate the
fluid dynamics of blood flow in human heart has attracted considerable interests in the last few years [7]. In Peskin’s cases,
the singular force on the Lagrangian coordinates of the boundary is known and the effect of the force is spread to the flow
field with the Eulerian coordinates via a regularized Dirac delta function. The primary advantage of the immersed boundary
method based on Cartesian mesh is that the task of grid generation is greatly simplified.

Following the lead of Peskin [6], many variants of IB method have been developed. To calculate the interactions between
solid boundary and fluid, Goldstein et al. [8] proposed a feedback scheme to iteratively determine the magnitude of the force
required to obtain a desired velocity on the immersed boundary. Saiki and Biringen [9] implemented this feedback scheme
with the virtual boundary method to compute the flow past a stationary, rotating and oscillating circular cylinder, but the
feedback forcing induces oscillations and the computational time step is restricted for numerical stability. Mohd-Yusof [10]
and Fadlun et al. [11] proposed an approach to calculate the interaction force between the immersed boundary and fluid
called direct forcing scheme. The velocity at the points which are close to the immersed boundary is simply set to the desired
. All rights reserved.
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velocity at every time-step. It seems like applying an equivalent forcing term to the Navier–Stokes equations. Compared to
the feedback forcing, the direct forcing is more general because there is no unknown constant that should be determined in
the formulations of solving the direct forcing. In order to allow for a smooth transfer between Eulerian and Lagrangian rep-
resentations while at the same time avoiding strong restrictions of the time step, Uhlmann [12] proposed an improved meth-
od to incorporate the regularized delta function approach into a direct formulation of the fluid–solid interaction force. Wang
et al. [13] and Luo et al. [14] proposed an explicit multi-direct forcing approach based on the Peskin’s original IB method [6]
to obtain a better satisfaction of the no-slip boundary condition at the immersed boundary of rigid body than that of the
original direct forcing approach. Feng and Michaelides [15] introduced a numerical method called Proteus combined the im-
mersed boundary method, the direct forcing method and lattice Boltzmann method for the simulation of particulate flows.
Lee et al. [16] proposed the immersed finite element method for solving fluid–structure interaction problems. Kim et al. [17]
present the IB method for simulating flows over complex geometries by introducing a mass source/sink as well as a momen-
tum forcing based on a finite volume approach.

For computing the moving object, one challenge is calculating the trajectory of the objects smoothly or continuously. This
problem can be handled by applying a smooth regularized delta function (or interpolation/extrapolation function) as dem-
onstrated by Uhlmann [12]. However, in pressure-velocity formulations, the pressure is an implicit variable in the governing
equations and the specification of the boundary conditions of pressure is necessary. The un-convergence of the coupling of
the pressure field at the early stage of the computation can lead to the oscillation of the forcing exerting on the moving ob-
ject. The oscillation of the trajectory of the object at the early stage of the computation occurs.

For vorticity formulations, the pressure field is eliminated by taking the curl of the Navier–Stokes equations [18,20]. And
the oscillation of the implicit pressure at the early stage of the computation can be avoided. We expect a smooth solution of
the forcing exerting on the moving object by applying the immersed boundary method based on vorticity formulations, de-
spite needing the solutions of one more and two more Poisson equations respectively for 2D and 3D computation than that
for velocity–pressure formulations.

The IB method is mainly based on the velocity–pressure formulations and seldom on the vorticity formulations. Calhoun
[29] described a method for solving the two-dimensional Navier–Stokes equations in irregular physical domain based on
uniform Cartesian gird, finite-difference/finite-volume discretizations of the streamfunction–vorticity equations. At the
embedded boundary, Calhoun [29] determined the discontinuity conditions of the vorticity and streamfunction needed to
impose the no-slip flow conditions. The correction terms of the vorticity and streamfunction at the embedded boundary
are coupled in the Poisson-like equations and solved by applying the immersed interface method introduced by LeVeque
and Li [41]. The calculation of the discontinuities needs solving a rather large linear system and the linear system must
be regenerated at every time step for moving object. This is time-consuming for computing moving object.

Russell and Wang [19] presented a method for solving 2D incompressible viscous flows around multiple moving objects
based on the streamfunction–vorticity formulations and with discontinuities representing the embedded objects. Instead of
using a linear system to couple all the variables involved as Calhoun [29], Russell and Wang [19] calculates the values of the
discontinuities in separate steps. The no-penetration condition for the moving geometry is satisfied by superposing a
homogenous solution to the Poisson’s equation for the streamfunction. The no-slip condition is satisfied by generating vor-
ticity on the surfaces of the objects with the Thom’s formula. And the immersed interface method introduced by LeVeque
and Li [41] also is applied for solving Poisson-like equations.

In present paper, we develop a new immersed boundary method based on vorticity–velocity formulations for the simu-
lation of 2D incompressible viscous flow. The spirit of the original immersed boundary proposed by Peskin [6] is applied. It
means that the Lagrangian points are used to represent the boundary of the embedded object and the regularized delta func-
tion is applied for the interpolation/extrapolation process between Lagrangian points and Eulerian grids. This is different
from the methods of Calhoun [29] and Russell and Wang [19]. The multi-direct forcing scheme proposed by Wang et al.
[13] and Luo et al. [14] is applied to ensure the satisfaction of the no-slip boundary condition at the immersed boundary.
And the vorticity at the immersed boundary is corrected from the conservation equations. To verify present method, the test
cases including decaying vortices, flow past a stationary circular cylinder and an in-line oscillating cylinder in a fluid at rest
are conducted in this paper.

The paper is organized as follows: Section 2 introduces the IB method based on vorticity–velocity formulations
including the basic governing equations (Section 2.1), the IB method with direct forcing based on vorticity–velocity for-
mulations (Section 2.2), the multi-direct forcing process (Section 2.3) and the flow solving process (Section 2.4). Section
3 is the numerical validation of present method including decaying vortices (Section 3.1), flow past a stationary circular
cylinder (Section 3.2) and an in-line oscillating cylinder in a fluid at rest (Section 3.3). And Section 4 is the summary of
conclusions.
2. Numerical schemes

2.1. Governing equations

The two-dimensional dimensionless Navier–Stokes equations for incompressible viscous flow in the whole computa-
tional domain X with immersed boundary method are
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where u = (u,v) is the velocity of fluid, p is the pressure, Re is the Reynolds number defined as Re ¼ q�U�L
l . Here q is the density

of fluid, Re is the characteristic velocity of flow field, Re is the characteristic length of flow field and l is the viscosity of fluid.
f = (fx, fy) in Eqs. (1) and (2) is the external force exerted on the flow field which represents the mutual interaction force be-
tween fluid and immersed boundary expressed as following:
f ðxÞ ¼
Z

X
FkðxkÞ � dðx� xkÞdxk ð4Þ
where d(x � xk) is the Dirac delta function, xk is the position of the Lagrangian points set at the immersed boundary, x is the
position of the computational Eulerian mesh and Fk(xk) is the force exerted on the Lagrangian point xk.

The vorticity is defined as
x ¼ ov
ox
� ou

oy
ð5Þ
and the dimensionless vorticity–velocity formulations of the Navier–Stokes equations for incompressible viscous flow in the
entire computational domain X including the immersed boundary are:
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The Poisson equations for solving velocity in Eqs. (7) and (8) are obtained from the continuity equation Eq. (3) and vorticity
definition equation Eq. (5).

2.2. Immersed boundary method with direct forcing based on vorticity–velocity formulations

The direct forcing technique based on velocity–pressure formulations or primitive variables (Eqs. (1) and (2)) has been
studied extensively [10–12,15]. In order to let the velocity on the Lagrangian points at the immersed boundary satisfy the
no-slip boundary condition, a forcing Fk (xk) is imposed on the Lagrangian point to modify its velocity equal the desired
velocity uL. The forcing Fk(xk) is determined as follows.

From the momentum equation (Eqs. (1) and (2)) of the flow field, one can get
f ¼ ou
ot
þ u � ruþrP � 1

Re
r2u ¼ ou

ot
� rhs ¼ unþ1 � un

Dt
� rhs ð9Þ
where n and n + 1 represent two different time and rhs ¼ �ðu � ruþrP � 1
Rer

2uÞ.
And for the Lagrangian point xk at the immersed boundary, one can get
FkðxkÞ ¼
unþ1

k � un
k

Dt
� rhs ¼ unþ1

k � ûk

Dt
þ ûk � un

k

Dt
� rhs ð10Þ
where ûk is a temporary parameter which satisfies the common momentum equation at the immersed boundary, that is
ûk � un
k

Dt
� rhs ¼ 0 ð11Þ
Therefore, the forcing exerted on the Lagrangian points at the immersed boundary is
FkðxkÞ ¼
unþ1

k � ûk

Dt
¼ uL � ûk

Dt
ð12Þ
Under the effect of the forcing, the velocity on the Lagrangian point xk at n + 1 time unþ1
k can be modified to the desired veloc-

ity uL. And the Dirac delta function is applied in the two-way coupling between Eulerian girds and Lagrangian points. The
temporary velocity on the Lagrangian point at the immersed boundary xk is obtained from its surrounding Eulerian grids
x as following:
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ûk ¼
X
x2X

û � dhðxk � xÞ � h2 ð13Þ
where û is also the temporary parameter on the Eulerian grids which satisfies the common momentum equation. The effect
of the forcing is spread from the Lagrangian points to the Eulerian grids through the following equation,
f ðxÞ ¼
Z

X
FkðxkÞ � dðx� xkÞdxk ¼

XN

k¼1

FkðxkÞ � dhðx� xkÞ � DVk ð14Þ
where N is the number of Lagrangian points, and DVk is the discrete volume for each Lagrangian point.
For the vorticity–velocity formulations (Eqs. (6)–(8)), the velocity of the flow field is calculated through Poisson equations

(Eqs. (7) and (8)). Based on the concept of the immersed boundary method in velocity–pressure formulations, we propose
the following scheme with direct forcing and vorticity–velocity formulations.

The vorticity x is divided into x ¼ x̂þx0. The variable x̂ is the vorticity without the influence of the immersed bound-
ary. And the variable x0 is the corrected vorticity due to the effect of the immersed boundary. The velocity is also divided into
u ¼ ûþ u0, the variable û ¼ ðû; v̂Þ is the velocity without the influence of the immersed boundary. And the variable u0 = (u0, v0)
is the corrected velocity due to the effect of the immersed boundary.

And the vorticity transport equations (Eq. (6)) can be written as
oðx̂þx0Þ
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And the Poisson equations for solving the velocity in Eqs. (7) and (8) can be divided into the following equations.
o2û
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If there is not any immersed boundary in the flow field, the vorticity and velocity of the whole flow field can be calculated
from Eqs. (16) (18) and (19). And if there is immersed boundary in the flow field, the variables x0 and u0 = (u0,v0) are not zero
due to the effect of immersed boundary on the flow field.

Based on the concept of direct forcing, the velocity of the whole flow field will be modified by the forcing f = (fx, fy) to en-
sure the satisfaction of no-slip boundary at the immersed boundary.
unþ1
k � ûk

Dt
¼ FkðxkÞ ¼

uL � ûk

Dt
ð22Þ

unþ1 � û
Dt

¼ f ðxÞ ¼
Z

X
FkðxkÞ � dðx� xkÞdxk ð23Þ
where û ¼ ðû; v̂Þ is the velocity without the influence of the immersed boundary and can be obtained from Eqs. (18) and (19).
Then the corrected velocity u0 = (u0, v0) can be calculated as
u0

Dt
¼ unþ1 � û

Dt
¼ f ðxÞ ¼

Z
X

FkðxkÞ � dðx� xkÞdxk ð24Þ
or
u0 ¼ f ðxÞ � Dt ¼
Z

X
FkðxkÞ � dðx� xkÞdxk � Dt ð25Þ
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And for the corrected vorticity x0, we can get following equations from Eqs. (17), (20), (21) and (25).
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Here unþ1 ¼ ûþ u0 and vnþ1 ¼ v̂ þ v 0 in Eqs. (28) and (29). The corrected vorticity at n time level is zero x
0n = 0, and then the

corrected vorticity at n + 1 time level is
x0nþ1 ¼ ofy
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The vorticity at n + 1 time level is xnþ1 ¼ x̂þx0nþ1. The presence of the immersed body is considered in both the corrected
velocity equation (Eq. (25)) and the corrected vorticity equation (Eq. (30)).

2.3. Multi-direct forcing process

The multi-direct forcing has been proposed by Wang et al. [13] and Luo et al. [14] to ensure a better satisfaction of the no-
slip boundary condition of the velocity at the immersed boundary than that of the original direct forcing scheme proposed by
Mohd-Yusof [10] and Fadlun et al. [11]. Here we just rewrite the process of multi-direct forcing process.

By solving Eq. (23), the velocity of the whole flow field un+1,l is obtained where n + 1 is the time level and the upper sub-
script l represents exerting the direct forcing for the lth time. Then the velocity on the Lagrangian point is
ûl
k ¼

X
x2X

unþ1;l � dðxk � xÞ � h2 ð31Þ
The best result is ûl
k ¼ uL, but always the result is ûl

k – uL. Though the velocity at the immersed boundary can get close to the
desired velocity after a long period of time, the no-slip boundary condition is still not satisfied very well. For the sake of get-
ting the velocity on the Lagrangian point much close to the desired velocity, the direct forcing is exerted for the (l + 1)th time
which makes
F lþ1
k ðxkÞ ¼

uL � ûl
k

Dt
ð32Þ
Then the forcing is spread from the Lagrangian points to the Eulerian grids through the Dirac-delta function
f lþ1ðxÞ ¼
XN

k¼1

F lþ1
k ðxkÞ � dðx� xkÞ � DVk ð33Þ
After exerting the direct forcing for the second time, the velocity of the whole flow field becomes
unþ1;lþ1 ¼ unþ1;l þ f lþ1ðxÞ � Dt ð34Þ
Thus the velocity on the Lagrangian point at the immersed boundary becomes
ûlþ1
k ¼

X
x2X

unþ1;lþ1 � dðxk � xÞ � h2 ð35Þ
The value of ûlþ1
k is expected to be closer to the desired velocity uL than that of ûl

k. After NF times of this procedure during one
time step, the velocity at the immersed boundary can get much close to the desired velocity. The total forcing exerting on
each Lagrangian point Fk(xk) is the sum of the forcing exerting on each Lagrangian point for the whole NF times, that is:
FkðxkÞ ¼
XNF

i¼1

F i
kðxkÞ ð36Þ
The multi-direct forcing scheme envisages the fact that the formulation of direct forcing is based on a single Lagrangian point
and when applying the direct forcing on a group of interactional Lagrangian points and spreading the effect of forcing to
Eulerian grids through the interpolation/extrapolation scheme (or the Dirac delta function), the direct forcing will not be
so effectively. And the multi-direct forcing scheme can handle this problem.
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The procedure of the multi-direct forcing is performed in O(NF � N) operations for an object. And NP objects need
O(NP � NF � N) operations. When the whole computational domain is full of the objects with the distance between two
Lagrangian points lightly smaller than the mesh size, we can get (NP � N) � NE, where NE is the number of the Eulerian grids.
This means the maximum operations is O(NE � NF). Uhlmann [12] and Le et al. [40] applied an implicit forcing to couple the
fluid and the immersed boundary. The coupling is performed through solving the Helmholtz equations which need
O(NEln(NE)) operations [19]. The computational cost for present multi-direct forcing scheme is much cheaper than the im-
plicit forcing proposed by Uhlmann [12] and Le et al. [40] especially when the number of Eulerian grids is large.

2.4. Flow solving process

The flow solving process can be summarized as follows.
At time level n, set x̂ð0Þ ¼ xn, û ¼ un

do i = 1, 3
x̂ðiÞ ¼ aðiÞ � x̂n þ bðiÞ � x̂ði�1Þ þ 1
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enddo
Set uð1Þ ¼ û, x̂ ¼ x̂ð3Þ.
do j = 1, NF
uðjÞk ¼
X
x2X

uðjÞ � dðxk � xÞ � h2 ð40Þ

FðjÞk ðxkÞ ¼
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Dt
ð41Þ
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FðjÞk ðxkÞ � dðx� xkÞ � DVk ð42Þ

uðjþ1Þ ¼ uðjÞ þ f ðjÞðxÞ � Dt ð43Þ
enddo
Set un+1 = u(NF+1) and f ðxÞ ¼

PN
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h i
� dhðx� xkÞ � DVk ¼
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xnþ1 ¼ x̂þx0 ð47Þ
The third-order Runge–Kutta method for the time integration of the vorticity transport equation is applied. The parameters
for time integration in Eq. (37) are a = [1,3/4,1/3], b = [0,1/4,2/3] and c = [1,1/4,2/3] [21]. Eqs. (40)–(43) are the multi-direct
forcing process with NF times.

The discrete delta function is chosen as that of Griffith and Peskin [22]
dhðx� xkÞ ¼
1

h2 dh
x� xk

h

� �
� dh

y� yk

h

� �
ð48Þ
where x = (x,y), xk = (xk,yk), h is the Eulerian mesh size, and
dhðrÞ ¼

1
8 3� 2jrj þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4jrj � 4r2
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1
8 ð5� 2jrj �
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�7þ 12jrj � 4r2

p
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0 2 6 jrj

8>><
>>: ð49Þ
The spatial derivatives are discretized using the fourth-order compact finite difference scheme [23] based on non-staggered
grid. The Poisson equations for velocity in Eqs. (38) and (39) are discretized with forth-order accuracy proposed by Zhuang
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and Sun [24], and the Gauss–Seidel iterative method is applied to solve the discrete Poisson equations with the infinite-norm
error during two iterative steps smaller than 10�5.

To validate present immersed boundary method based on vorticity–velocity formulations, three test cases including
decaying vortices, flow past a stationary circular cylinder and an in-line oscillating cylinder in a fluid at rest are conducted.
In the cases of flow past a stationary circular cylinder and flow past an in-line oscillating cylinder, the total hydrodynamic
force exerted on the cylinder is
F

F ¼
H

oXP
s � ndr ¼

R
XP
ð�rpþ lr2uÞdV ¼ q duP

dt VP � q
R

XP
f dV

¼ q duP
dt VP � q

R N
1 FkðxkÞdxk ¼ q duP

dt VP � q
PN
k¼1

PNF

j¼1
FðjÞk ðxkÞ

" #
� DVk

ð50Þ
where oXP is the surface of the circular cylinder region XP, VP is the area of the cylinder and uP is the velocity of the circular
cylinder. The term qf

duP
dt VP is derived from the relation of rigid circular cylinder motion (Eq. (51)).� �
qf
duP

dt
VP ¼ qf

Z
XP

ou
ot
þ u � ru dV in XP ð51Þ� �
For the case of flow past a stationary circular cylinder, this term is zero qf
duP
dt VP ¼ 0 .

3. Results

3.1. Accuracy of flow solving

The case of Taylor–Green decaying vortices is calculated to analyze the spacial accuracy of present immersed boundary
method based on vorticity–velocity formulations. The analytical solutions of the two-dimensional decaying vortices are
uðx; y; tÞ ¼ � cosðp � xÞ � sinðp � yÞ � expð�2p2t=ReÞ ð52Þ
vðx; y; tÞ ¼ sinðp � xÞ � cosðp � yÞ � expð�2p2t=ReÞ ð53Þ
xðx; y; tÞ ¼ 2p � cosðp � xÞ � cosðp � yÞ � expð�2p2t=ReÞ ð54Þ
Kim et al. [17] calculated this problem in a quadrilateral embedded domain and Uhlmann [12] solved this case in an embed-
ded circle domain. And here, we solve this problem in an embedded circle domain with radius unity and centered at the en-
tire computational domain X = [�1.5,1.5] � [�1.5,1.5] with Re = 100. The boundary condition for whole computational
domain and the desired velocity at the immersed boundary are given by Eqs. (52)–(54).

The one-norm and two-norm for variable / = (u,x) are defined as
l1�/ ¼
1

NXNY

XNX NY

k¼1

j/numerical
k � /exact

k j ð55Þ

l2�/ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NXNY

XNX NY

k¼1

ð/numerical
k � /exact

k Þ2
vuut ð56Þ
ig. 1. Position of the embedded circle and the counter of vorticity for time step Dt = 0.001 and the results at t = 0.3 with mesh size h = 1/32.



Fig. 2. Convergence of spatial accuracy for Dt = 0.001, NF = 20 (Results at t = 0.3 with mesh size h = 1/8, 1/16 and 1/32 and 65, 110 and 200 Lagrangian
points are used at the immersed boundary of the circle, respectively).
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where NX and NY are the total mesh points in x and y direction, respectively. The upper subscripts ‘numerical’ and ‘exact’ rep-
resent the value obtained from present flow solving scheme (Eqs. (37)–(47)) and from Eqs. (52)–(54), respectively. Fig. 1
shows the position of the embedded circle and the counter of vorticity for Dt = 0.001 and the results at t = 0.3 with mesh
size h = 1/32. Fig. 2 shows the convergence of spatial accuracy for Dt = 0.001, NF = 20 and the results at t = 0.3 with mesh size
h = 1/8, 1/16, 1/32 and 1/64 and 55, 110, 220 and 440 Lagrangian points are used at the immersed boundary of the circle,
respectively. The errors of one-norm and two-norm are decreased in slope 2 as the decrement of mesh size. This confirms
that the spacial second-order accuracy is obtained in present method. The effect of multi-direct forcing NF will be analyzed
by computing the flow past a stationary circular cylinder in Section 3.2.

3.2. Flow past a stationary circular cylinder

A rectangular domain is used to simulate the flow past a stationary circular cylinder using the immersed boundary meth-
od and multi-direct forcing based on the vorticity–velocity formulations proposed in this paper. The schematic of the com-
putational domain is shown in Fig. 3 with dimension 20L � 15L. The characteristic length is the diameter of the circular
cylinder. The non-dimensional mesh size is h ¼ 1

32 and the total computational grids are 641 � 481. A constant velocity pro-
file U1 is specified at the inflow boundary and a non-reflecting boundary condition [25] is applied at the outflow boundary.
The Neumann boundary conditions are imposed on the other boundaries. And the boundary conditions are summarized as
follows:
Fig. 3. Schematic of the computational domain for the case of flow past a stationary circular cylinder.
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Inflow boundary ðat x ¼ 0Þ : u ¼ 1; v ¼ 0; x ¼ ov=ox ð57Þ

Outflow boundary ðat x ¼ XMaxÞ :
ou
ot
þ c

ou
ox
¼ 0 ð58Þ

ov
ot
þ c

ov
ox
¼ 0 ð59Þ

ox
ot
þ c

ox
ox
¼ 0 ð60Þ

Neumann boundary ðat y ¼ 0 and y ¼ YMaxÞ :
ou
oy
¼ 0; v ¼ 0; x ¼ 0 ð61Þ
where the parameter c in Eqs. (58)–(60) is the mean velocity at the outflow boundary [17,26].
The simulations of flow past a stationary circular cylinder at Re = 100 with different times of multi-direct forcing NF are

conducted to show the efficiency of the multi-direct forcing on reducing the error between the calculated velocity and de-
sired velocity at the immersed boundary. The dimensionless mesh size is h ¼ 1

32, the time step is Dt = 1.25 � 10�3 and 110
Lagrangian points are used at the immersed boundary (N = 110). The two-norm error of the velocity on the Lagrangian point
with respect to no-slip boundary condition is defined as
l2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
k¼1½ðuk � uLÞ2 þ ðvk � vLÞ2�

N

s
ð62Þ
where the dimensionless desired velocity at the immersed boundary is uL = (uL,vL) = (0,0).
Fig. 4 shows the correlation of l2-norm and NF. Here NF = 1, 2, 4, 8 and 16 are the times of the multi-direct forcing. As the

number of NF increases, the l2-norm decreases to zero which indicates the calculated velocity at the immersed boundary get
close to the desired velocity under the effect of the multi-direct forcing. When NF = 1, the l2-norm is 1.468 � 10�2, which
means that the direct forcing has effect on modifying the velocity at the immersed boundary to the desired velocity. When
NF increases to 16, the value of l2-norm decreases to 2.56 � 10�4. The multi-direct forcing can make the velocity at the im-
mersed boundary get more close to the desired velocity and the no-slip boundary condition at the immersed boundary is
satisfied better for NF = 16 than that for NF = 1. In this case, the value of NF is chosen as 16, and the l2-norm of the velocity
at the immersed boundary is smaller than 3 � 10�4 which can be treated as the well satisfaction of the no-slip boundary
condition at the immersed boundary.

The flow past the stationary circular cylinder at low Reynolds number (Re = 20 and 40) and at moderate Reynolds number
(Re = 80, 100, 200 and 300) are conducted to validate present immersed boundary method based on vorticity–velocity for-
mulations. The dimensionless mesh size is h ¼ 1

32, the time step is Dt = 1.25 � 10�3 and 110 Lagrangian points are used at the
immersed boundary.

A steady state with a pair of symmetric weak behind the circular cylinder is obtained at Reynolds numbers 20 and 40
which consists with previous studies [9,29,31]. Fig. 5 shows the streamline and vorticity counter for Re = 20(Fig. 5(a)) and
Re = 40 (Fig. 5(b)). The drag coefficient and wake length including present results and previous numerical and experimental
results at Re = 20 and Re = 40 are summarized in Table 1. The results of the drag coefficient and wake length at Re = 20 and
Re = 40 in present work agree well with the experimental result of Tritton [28] and the numerical results of Russell and Wang
[19], Xu and Wang [27], Calhoun [29] and Silva et al. [30].

When the Reynolds number is greater than 47, unsteady vortex shedding occurs [35,36]. Fig. 6(a)–(d) shows the stream-
line and vorticity counter near the circular cylinder at t = 200 for Re = 80, 100, 200 and 300, respectively. The results of the
Fig. 4. Correlation of l2-norm and NF. (NF = 1, 2, 4, 8 and 16 are the times of the multi-direct forcing.)



Fig. 5. Streamline and vorticity counter for Re = 20(a) and Re = 40(b). The dimensionless mesh size is h ¼ 1
32, the time step is Dt = 1.25 � 10�3 and 110

Lagrangian points are used at the immersed boundary.

Table 1
Drag coefficient and wake length for flow past a stationary circular cylinder at Re = 20 and Re = 40.

Authors Re = 20 Re = 40

Drag coefficient Weak length Drag coefficient Weak length

Tritton [28]a 2.22 – 1.48 –
Xu and Wang [27]b 2.23 0.92 1.66 2.21
Calhoun [29]b 2.19 0.91 1.62 2.18
Russell and Wang [19]b 2.22 0.94 1.63 2.35
Silva et al. [30]b 2.04 1.04 1.54 2.55
Present 2.25 0.978 1.66 2.35

a Experimental results.
b Numerical results.
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drag coefficient at Re = 80, 100, 200 and 300 with previous studies are summarized in Table 2. For Re = 80, the drag coeffi-
cient is 1.428 in present simulation which is close to the numerical results of Silva et al. [30] and Ye et al. [31] and 11% larger
than the experimental result of Clift et al. [32]. For Re = 100, the drag coefficient is 1.379 in present simulation which is close
to the numerical results of Russell and Wang [19], Silva et al. [30], Xu and Wang [27], Calhoun [29] and 11% larger than the
experimental result of Clift et al. [32]. For Re = 200, the drag coefficient is 1.262 in present simulation which is close to the
result of Russell and Wang [19], 11% smaller than the numerical result of Xu et al. [27] and about 9% larger than the numer-



Fig. 6. Streamline and vorticity counter near the circular cylinder at t = 200 (a–d represent the cases for Re = 80, 100, 200 and 300, respectively).
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ical result of Calhoun [29] and the experimental result of Clift et al. [32]. For Re = 300, the drag coefficient is 1.174 in present
simulation which is close to the experimental result of Clift et al. [32], and smaller than the numerical results of Silva et al.
[30] and Ye et al. [31].



Table 2
Drag coefficient for flow past a stationary circular cylinder at Re = 80, 100, 200 and 300.

Authors Re = 80 Re = 100 Re = 200 Re = 300

Clift et al. [32]a 1.28 1.24 1.16 1.13
Russell and Wang [19]b – 1.34 1.26 –
Silva et al. [30]b 1.40 1.39 – 1.27
Xu and Wang [27]b – 1.423 1.42 –
Calhoun [29]b – 1.33 1.172 –
Ye et al. [31]b 1.37 – – 1.38
Present 1.428 1.379 1.262 1.174

a Experimental results.
b Numerical results.
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Table 3 shows the lift coefficient obtained by present method and previous numerical studies at Re = 80, 100 and 200. For
Re = 80, the lift coefficient is 0.263 in present simulation which is close to the result of Le et al. [40]. For Re = 100, the lift
coefficient is 0.357 in present simulation which is close to the numerical results of Xu and Wang [27] and Le et al. [40]
and larger than the numerical results of Braza et al. [33] and Calhoun [29]. For Re = 200, the lift coefficient is 0.708 in present
simulation which is smaller than the numerical result of Braza et al. [33] and larger than the numerical results of Xu and
Table 3
Lift coefficient for flow past a stationary circular cylinder at Re = 80, 100 and 200.

Re = 80 Re = 100 Re = 200

Braza et al. [33] – 0.25 0.75
Xu and Wang [27] – 0.34 0.66
Calhoun [29] – 0.298 0.668
Le et al. [40] 0.261 0.346 0.676
Present 0.263 0.357 0.708

Fig. 7. Time history of the drag coefficient and the lift coefficient (a–d represent the cases for Re = 80, 100, 200 and 300, respectively).



Table 4
Strouhal number for flow past a stationary circular cylinder at Re = 80, 100, 200 and 300.

Authors Re = 80 Re = 100 Re = 200 Re = 300

Williamson [34]a 0.15 0.163 0.197 0.20
Xu and Wang [27]b – 0.171 0.202 –
Calhoun [29]b – 0.175 0.202 –
Ye et al. [31]b 0.15 – – 0.21
Present 0.158 0.170 0.195 0.206

a Experimental results.
b Numerical results.

Fig. 8. Time history of the l2-norm of the velocity for a circular cylinder in-line oscillation at Re = 100 and KC = 5 in a periodic time T of the oscillation.

Fig. 9. Vorticity counter at four different phase angles at Re = 100 and KC = 5 (a–d represent the phase angles 0�, 96�, 192� and 288�, respectively).
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Wang [27], Calhoun [29] and Le et al. [40]. The time history of the drag and lift coefficient for Re = 80, 100, 200 and 300 is
shown in Fig. 7(a)–(d), respectively.

The Strouhal numbers obtained from the Fast Fourier Transform of the lift coefficient time distribution for flow past the
stationary at Re = 80, 100, 200 and 300 are summarized in Table 4 including present results and previous experimental and
numerical results. For Re = 80, the Strouhal number is 0.158 in present simulation which is 5% larger than the experimental
result of Williamson [34] and the numerical result of Ye et al. [31]. For Re = 100, the Strouhal number is 0.17 in present sim-
ulation which is 4% larger than the experimental result of Williamson [34], 3% smaller than the numerical result of Calhoun
[29] and close to the result of Xu and Wang [27]. For Re = 200, the Strouhal number is 0.195 in present simulation which is
close to the experimental result of Williamson [34] and smaller than the numerical results of Xu and Wang [27] and Calhoun
[29]. For Re = 300, the Strouhal number is 0.206 in present simulation which is larger than the experimental result of Wil-
liamson [34] and smaller than the numerical results of Ye et al. [31].
Fig. 10. Computed velocity profiles u/Umax and v/Umax respectively in the oscillation direction and transverse direction at four different x locations and three
different phase angles (/ = 2pft): (a) 180�; (b) 210�; (c) 330�. Lines are the present results; symbols are the experimental results of Dütsch et al. [37]: (— and
j) at x = �0.6D; (— and N) at x = 0.0D; (-�- and �) at x = 0.6D; (-��- and �) at x = 1.2D.
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3.3. In-line oscillating cylinder in a fluid at rest

The case of an in-line oscillating cylinder in a fluid at reset is studied to validate present method on solving boundary
problem. And we expect a smoother solution of the forcing exerting on the moving cylinder at the early stage of the com-
putation by applying the immersed boundary method based on vorticity formulations than that based on velocity–pressure
formulations.

The two key parameters for this flow are the Reynolds number, Re ¼ q�Umax �D
l , where Umax is the maximum velocity of the

cylinder, D is the diameter of the cylinder, and the Keulegan–Carpenter number, KC ¼ Umax
f �D , where f is the characteristic fre-

quency of the oscillation. The in-line motion of the cylinder is described by a simple harmonic oscillation,
Fig. 11.
Line rep
xðtÞ ¼ �A � sinð2pftÞ ð63Þ
where A is the amplitude of the oscillation and x(t) is the position of the cylinder in the direction of the oscillation. The two
key parameters in present work are chosen as Re = 100 and KC = 5 corresponding to the experimental and numerical study of
Dütsch et al. [37], the numerical studies of Yang and Balaras [38] and Choi et al. [39].

The characteristic length is chosen as the diameter of the cylinder D, the characteristic velocity is chosen as the maximum
velocity of the cylinder Umax, and the dimensionless computational domain is 20 � 20 with a uniform mesh size h = 1/40. The
total computational mesh grid is 801 � 801. Neumann boundary condition for velocity is applied at all boundaries of the
computational domain. The dimensionless time step is Dt = 1.0 � 10�3 and 138 Lagrangian points are used at the immersed
boundary. In this case, the value of NF is 16 and the l2-norm of velocity defined in Eq. (62) is smaller than 5 � 10�4. The time
history of the l2-norm of velocity in a period of oscillation is shown in Fig. 8.

Fig. 9 shows the vorticity counter at four different phase angles (a � d represent the phase angles 0�, 96�, 192� and 288�,
respectively) in a periodic vortex shedding corresponding to the studies of Dütsch et al. [37] and Yang et al. [38].

Fig. 10 shows the computed velocity profiles in the oscillation direction and transverse direction at four different x loca-
tions (x = �0.6D, 0D, 0.6D and 1.2D) and three different phase angles (/ = 2pft = [180�, 210�, 330�]), in comparison with the
experimental results of Dütsch et al. [37]. The agreement is very good.

Fig. 11 shows the predicted time history of the in-line force Fx calculated by Eq. (50) and compares with the results of
Dütsch et al. [37] in a period of the oscillation. Again, a good agreement is observed. This indicates that present method
can calculate the force acting on the cylinder’s surface accurately.

Fig. 12 shows the predicted time history of the in-line force Fx obtained by present vorticity–velocity formulations and
compares with the results obtained by the velocity–pressure formulations. Here, we use the method of velocity–pressure
formulations described by Wang et al. [13] to compute the same case. At the early stage of the computation, the curve of
the force obtained by present vorticity–velocity formulations is smooth as we expected while there is some oscillation of
the force obtained by the velocity–pressure formulations. After some time steps, the convergence of solving the pressure
field is reached and the oscillation of the force obtained by the velocity–pressure formulations is vanished. It indicates that
a more accuracy solution of the coupling between the moving object and flow field is obtained by present vorticity–velocity
formulations. This is the main advantage of the present IB method based on the vorticity–velocity formulations. And it can be
applied to calculating the trajectories of sudden start objects and particles in multiphase flows smoothly and accurately.
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Predicted time history of the in-line force Fx for a circular cylinder in-line oscillation at Re = 100 and KC = 5 in a periodic time T of the oscillation.
resents present results and symbols represent the results of Dütsch et al. [37].



Fig. 12. Predicted time history of the in-line force Fx for a circular cylinder in-line oscillation at Re = 100 and KC = 5. The solid line (—) represents the results
of present vorticity–velocity formulations and the dash dot line (-�-) represents the results of the velocity–pressure formulations.
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4. Conclusions

A new immersed boundary method based on vorticity–velocity formulations for the simulation of 2D incompressible vis-
cous flow is proposed in present work. The velocity and vorticity are, respectively, divided into two parts: one is the velocity
and vorticity without the influence of the immersed boundary, and the other is the corrected velocity and vorticity derived
from the influence of the immersed boundary. The corrected velocity is obtained from the concept of the direct forcing, and
in present work, the multi-direct forcing proposed by Wang et al. [13] and Luo et al. [14] is applied to ensure the well sat-
isfaction of the no-slip boundary condition at the immersed boundary. The corrected vorticity is derived from the governing
equations (vorticity transport equation and velocity Poisson equations). This is the main contribution of present work.

To validate present method, three cases including decaying vortices, flow past a stationary circular cylinder and an in-line
oscillating cylinder in a fluid at rest are conducted. In the case of decaying vortices, spatial second-order accuracy of present
method is obtained. In the case of flow past a stationary circular cylinder, the effect of the multi-direct forcing is verified. The
good agreements of the drag coefficient, the lift coefficient and the Strouhal number between present results and previous
numerical and experimental results validate the accuracy of present method. And at last, the case of an in-line oscillating
cylinder in a fluid at rest is studied. Again, the good agreements of the results between present work and previous numerical
and experimental results indicates the validity and accuracy of present immersed boundary method based on vorticity–
velocity formulations. The solution of the forcing exerting on the oscillating cylinder obtained by present method is smooth-
er than that of the velocity–pressure formulation especially at the early stage of the computation. This is the main advantage
of the present immersed boundary method based on the vorticity–velocity formulations.
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